Documentation for the piece “I solens flint 1000
floder” by Mads Kjeldgaard

Source material and production

“I solens flint 1000 floder” is an electronic composition by Mads Kjeldgaard.
It was composed in 7th order ambisonics, partly at NOTAM in Oslo, Norway,
and partly at EMS, Stockholm, Sweden. The title (which is in Danish) can be
translated to something along the lines of “In the shard of the sun 1000 rivers”.
The piece explores concepts of environment and potential and uses a mixture of
concrete and synthetic material as it’s source material.

The spatialization in the piece was achieved using a combination of the Reaper
DAW, IEM Plugins and custom scripting. The main spatialization technique
was the encoding of mono or stereo material using IEM’s StereoEncoder and
multi channel material using IEM’s MultiEncoder.

Structure

The piece has two overall major components that intersect with eachother in the
beginning and the end of the piece.

The first component (audible in the intro and outro) consists in the higher parts
of the spectrum of granular structures which are contrasted and reactive to a
low frequency whooshing sound. From here on referred to as “The granular
component”.

The second (and arguably main) component, situated in the middle part of the
composition, consists of a vortex of flutelike sounds. From here on referred to as
“The vortex component”.

A third component is the sound of an icey river recorded in a norwegian forrest
in winter time (see cover photo).

Component one: The granular component

The source material for this component consits mainly of hydrophonic recordings
from a thawing lake in central Copenhagen, Denmark. These recordings originally
contained a lot of background noise, partly due to the recording equipment but
most of all due to traffic sounds. The noise was removed using the Izotope RX
software and what was left was a crackling sound existing in a vacuum of sorts
with no background. These were then edited further both manually and using
custom scripting, which will be covered later on in this document.

The low, whooshing sound in this component is a processed recording of a hand
paper dispenser from a bath room.

Figure 1: The author gathering material for this piece

Component two: The vortex component

The source material for this component was synthesized and recorded in Studio
3 at Elektron Musik Studion in Stockholm, Sweden.

Figure 2: The Buchla 200 at EMS. Photo: Mads Kjeldgaard

During a residency there in 2018, I experimented with self playing feedback
system patches on the Buchla 200 synthesizer available in this studio. The
outcome of this was more than 25 hours of material.

Scripting
Random envelope points

A central script in the composition of this piece was one that would let the user
select a range of items on a track and an envelope point (in this case the azimuth
and elevation of an ambisonic encoder) and then at each starting point of each
item insert a random value. The interpolation curve between these points can
then be selected using different versions of the script and then edited further
like any other envelope point in Reaper. In the end, in this composition this
technique was mostly used to automate small deviations in volume on items that
were copied several times on the same track.

There is a problem though: Many composers of ambisonic sound seperate the
source and the encoding into two different tracks. The encoder being on the
parent track and the source on the child track. This poses a problem in Reaper
when moving material around (especially using Ripple Editing) since the source
track’s items and the parent track’s envelope points are not connected. This can
be solved by inserting an empty dummy track on the parent track containing

3

Figure 3: Envelope points inserted using mk_ Insert random envelope points for
selected items and track envelope (exp interpolation).lua

the encoder and automation. This will make Reaper move the envelope points
during Ripple Editing.

The full source code for this script can be found at github.com/madskjeldgaard/ReaScripts.
Below is the code for the central part of the script written in Lua.

local ran_env_1ib= {}

-- Insert random envelope points for selected items and track envelope (no interpolation)
num_items = reaper.CountSelectedMedialtems(O)

-- num_items = reaper.CountTrackMedialtems(reaper.GetSelectedTrack(0, 0))

-— MAIN

function ran_env_lib.main(envelope_interpolation)
-- Set random seed from operating system's time
math.randomseed(os.time())

-— Loop through all selected items and perform the action
-- Argument <s interpolation amount
items_loop(envelope_interpolation)

-— For some reason this ts needed to update the arrangement
reaper .UpdateArrange ()
end

http://github.com/madskjeldgaard/ReaScripts

-— Insert envelope point
function insert_point(in_env, position, interpolation)
if in_env then

-— Generate a value
local env_val = math.random(0O, 1000) / 1000
env_val = env_val * 1.0 —— Envelope walues are 0.0-2.0

-— Delete old point
reaper .DeleteEnvelopePointRange(in_env, position, position+l)

-- Insert new point
reaper. InsertEnvelopePoint(in_env, position, env_val,
interpolation * 10.0, 0, false, false)

else
reaper.ReaScriptError("No envelope selected")
end
end

-- Go through all selected items and insert points
function items_loop(master_interpolation)
if num_items then

for i_num=0, num_items-1 do

-- Item
local item = reaper.GetSelectedMedialtem(O, i_num)

if item then
-— Position
local i_pos = reaper.GetMedialtemInfo_Value(item, "D_POSITION")

-- Selected envelope
local sel_env = reaper.GetSelectedTrackEnvelope(O)

-- Set new point
insert_point(sel_env, i_pos, master_interpolation)

-— Sort the new points in time
reaper .Envelope_SortPoints(sel_env)
end
end

else
reaper.ReaScriptError("No item(s) selected")

end
end

return ran_env_1lib

Recursive processing

Another central part of the script writing process for this piece was the de-
velopment of a range of scripts to help automate a process of electro acoustic
manipulation in Reaper. These were spread out over a range of small scripts,
making them easy to incorporate into other custom actions in Reaper (these are
collected in the fx subfolder of the ReaScripts repo).

The core part of this technique was a modified version of a script originally
written by Michael Pilyavskiy aka. mpl which is available here. This original
script was written with an incorporated gui to help the user make sophisticated
“morphing” gestures between random fx parameters.

This was in my case shaved down to a core script that randomizes all fx parameters
of a focused vst plugin in Reaper and combined with a script that would apply
the randomized fx parameter settings to the item and render it as a new take,
making it possible to browse between original and manipulated versions of the
item using Reaper’s take functionality.

Another script was then developed to do all of this recursively and repeatedly
so that I could automate the creation of many different versions of the same
item. And this was then finally developed into more sophisticated versions that
would stretch or reverse the items on each iteration and then either feed the
manipulated version or the original version to the next iteration of the process
(the user can chose between different versions of the script to faciliate this).

An example of this can be heard in the granular component of the piece, where
the high pitched sounds of the crackling ice source material was run through this
process using a delay that on each iteration was randomized, the item’s playback
speed changed and then potentially reversed.

The full source code for this script can be found at github.com/madskjeldgaard /ReaScripts.

https://github.com/MichaelPilyavskiy/ReaScripts/blob/master/FX/mpl_Randomize%20Track%20FX%20parameters.lua
http://github.com/madskjeldgaard/ReaScripts

	Documentation for the piece ``I solens flint 1000 floder'' by Mads Kjeldgaard
	Source material and production
	Structure
	Component one: The granular component
	Component two: The vortex component

	Scripting
	Random envelope points
	Recursive processing

