Workshop notes for SuperCollider pattern
introduction workshop september 2020

2020-09-01T15:32:134-02:00

Contents
Design e 2
Short history of SuperCollider 2
OVEIVIEW o ot e e e e e e 3
Architecture 3
Multiple servers L 3
Consequences of SC’s modular design 3
Extending SuperCollider 3
SCPlugins o 5
How touse the IDE 5
Important keyboard shortcuts)
The IDE as a calculator)
Autocompletion 6
The status line 6
Help browser 6
Help browser online 7
Post window Lo o 7
About patterns 7
What is a pattern? 7
Guides in the help system 8
Event patterns - Sequence sound events 8
What is a (sound) event? L. 8
What does an Event look like? 8
Changing the default synth 9
Introducing the almighty Pbind 9
Keys correspond to Synth arguments 9
Important note on thedurkey 9
When does a Pbind end? 0. 9
Live coding: Pdef L 10
Value patterns - Generate data for your event patterns 10
The building blocks of compositions 10

List patternso 10

Testing value patterns: asStream 10
Pseq: Classic sequencer 11
Random value patterns: Pwhite and Pbrown 11
Random sequence patterns: Prand and Pxrand 11
Probability: Pwrand oL 11
Envelope pattern: Pseg 0oL 12
Rest o 12
Pkey: Share data between event keys 12
patterns in patterns: The computer music inception 12
Working with pitches oo oo 13
The pitch model 13
Changing scales L oo 13
Available scales 13
Changing root note 0oL 13
Changing octaves L 14
Playing chords o 14
Changing tempo L 14
Further learning resources oL 14
Videoso 14
E-book. 14
Community e 15
Awesome SuperCollider 15
Learning to code: Advice 15

These are workshop notes for the online introductory SuperCollider workshop
put on by Notam in September 2020. It covers the basics of using the pattern
library in SuperCollider

You can download the notes here: workshop-notes

Design

Short history of SuperCollider
SC was designed by James McCartney as closed source proprietary software

Version 1 came out in 1996 based on a Max object called Pyrite. Cost 2508+ship-
ping and could only run on PowerMacs.

Became free open source software in 2002 and is now cross platform and is now
maintained by a wonderful group of developers.

https://notam.no
https://groups.google.com/forum/#!topic/comp.music.research/g2f9EcL1mUw

Overview

When you download SuperCollider, you get an application that consists of 3
separate programs:

1. The IDE, a smart text editor
2. The SuperCollider language / client (sclang)
3. The SuperCollider sound server (scsynth)

Architecture

OSC
Client »> Server

Figure 1: alt

The client (language and interpreter) communicates with the server (signal
processing)

This happens over the network using Open Sound Control

Multiple servers

This modular / networked design means one client can control many servers

Consequences of SC’s modular design

Each of SuperCollider’s components are replacable:
IDE <—> SCIDE, (N)Vim, Atom or VSCode
language <—> Python, CLisp, TidalCycles, Javascript
server <—> Max/MSP, Ableton Live, Reaper

Extending SuperCollider

The functionality of SuperCollider can be extended using external packages

Client

O5C

Figure 2: alt

Server

Server

Server

These are called Quarks and can be installed using SuperCollider itself
// Install packages via GUI (does not contain all packages)

Quarks.gui;

// Install package outside of gui using URL
Quarks.install("https://github.com/madskjeldgaard/KloudGen") ;

SC Plugins
SC3 Plugins is a collection of user contributed code, mostly for making sound

The plugins are quite essential (and of varying quality / maintenance)

How to use the IDE

The IDE is the text editor that comes with SuperCollider. It has some really
smart features that are really helpful when writing code.

Important keyboard shortcuts

e Open help file for thing under cursor: Ctrl/cmd + d
o Evaluate code block: Ctrl/cmd + enter

¢ Stop all running code: Ctrl/cmd + .

o Start audio server: Ctrl/cmd + b

o Recompile: Ctrl/cmd + shift + 1

o Clear post window: Ctrl/cmd + shift + p

The IDE as a calculator
SuperCollider is an interpreted language
This means we can “live code” it without waiting for it to compile

A good example of this is using it as a calculator. Try typing 2+2 and evaluate
it:

2+2
-> 4

https://supercollider.github.io/sc3-plugins/

Sin

Bl Browse Search

SinGrain

SinGrainB DI |

SinGrainBBF

SinGrainBF

SinGrainl

SinGrainlBF pe

SinOsc o

SinOscFB o

SinTone .

SineShaper

SineWarp erCal

SingleBob

Singleton
ron
dmen
umen
ed

These are useful starting p
on SuperCollider:
Figure 3: autocomplete
Autocompletion

Start typing Sin and see a menu pop up with suggestions (and help files).

Use up/down arrow keys to navigate and hit enter to choose one

The status line

] Server:

Figure 4: autocomplete

Shows information about system usage

Right click to see server options + volume slider

Help browser

There is an interactive help browser available.

8@ SuperCollider Browse Search | Indexes ¥ Table Of Contents ¥

SupercCollider 3.11.0 |

Documentation home

SuperCollider is an audio server, programming language, and IDE for sound synthesis and algorithmic
composition.

NOTE: Mews in SuperCollider version 3.11

Search and browse

Search
Search all documents and methods

Browse
Browse all documents by categories

Getting started

These are useful starting points for getting help on SuperCollider:

Getting Started tutorial series
Get started with SuperCollider ~

Figure 5: autocomplete

You can select and evaluate all code in the browser and see / hear the results
immediately.

Help browser online

There’s an online version of the help system available at doc.sccode.org/ which
is really helpful for sharing links to documentation.

Post window
This is where you see the resulting return messages of the code you have evaluated

This is also where you see error messages posted.

About patterns

What is a pattern?
From the Pattern help file:

doc.sccode.org/
http://doc.sccode.org/Classes/Pattern.html

“|The Pattern] classes form a rich and concise score language for
music”

In other words:
Patterns are used to sequence and compose music
The cool thing about this is it is music treated as data.

This means we can easily transpose, stretch and warp the composition like you
will see in the following (instead of manually doing all of these things in a DAW).

This means for example that composing a 4 bar loop is not necessarily any more
or less work than a 4 hour one.

Guides in the help system
Patterns are pretty well documented in the help system:

e A practical guide
¢ Understanding Streams, Events and Patterns

Event patterns - Sequence sound events

What is a (sound) event?
Think of what happens when you press the key of a piano
What data does that involve?

e Duration of key press

o Pitch of the key

e Sustain (are you holding the foot pedal?)
e etc. ete.

What does an Event look like?
Make sure your server is booted before trying this:

// See the post window when evaluating these
() .play; // Default event

(freq:999) .play;

(freq:123, sustain: 8).play;

http://doc.sccode.org/Browse.html#Streams-Patterns-Events%3EA-Practical-Guide
http://doc.sccode.org/Browse.html#Tutorials%3EStreams-Patterns-Events

Changing the default synth
The default synth sucks
You can change it by defining a new synth called \default

More info on my website

Introducing the almighty Pbind
Arguably the most important pattern class in SuperCollider
A Pbind simply consists of a list of key/value pairs.

In this example, the keys are on the left side (\dur and \degree) and the
values on the right (1/4 and 0).

// Play quarter notes (try changing the O to another integer)
Pbind(

\dur, 1/4,
\degree, 0
) .play

Note the commas: This is what makes it a list.

Keys correspond to Synth arguments
Most often, keys correspond to a Synth’s arguments.

Example: If a SynthDef has the argument cutoff, we can access that argument
in a Pbind using \cutoff.

Important note on the dur key
\duris used in most SynthDefs to specify the duration of a note/event.

Make sure this key never gets the value 0.

When does a Pbind end?

If one of the keys of a Pbind are supplied with a fixed length value pattern, the
one running out of values first, will make the Pbind end.

https://madskjeldgaard.dk/how-to-change-the-default-synth-in-supercollider/

Live coding: Pdef
Live coding patterns: Wrap your event pattern (Pbind) in a Pdef:
Pdef (’myCoolPattern’, Pbind(...)) .play;

The Pdef has a name ‘myCoolPattern’ which is a kind of data slot accessible
throughout your system

Every time you evaluate this code, it overwrites that data slot (maintaining only
one copy)

Value patterns - Generate data for your event patterns

The building blocks of compositions
Basic building blocks:

o List patterns - Pseq

¢ Random value patterns, eg Pwhite, Pbrown

¢ Random sequence patterns - Pshuf, Prand, etc.
o Rests

Slightly more advanced building blocks:

o Envelope patterns like Pseg or Pstep
o Data sharing between event parameters, eg Plambda -
o Patterns in patterns

Advanced:

o Generate patterns / Pattern spawning - eg. Pspawn

List patterns

See all of them here

Testing value patterns: asStream
You will see the .asStream method a lot in the documentation for value patterns.

// Pattern
p Pseq([1,2,3]1);

// Convert to stream

10

http://doc.sccode.org/Browse.html#Streams-Patterns-Events%3EPatterns%3EList

P p.asStream;

// See what values the pattern produces
p.next; // 1, 2, 3, nil

Pseq: Classic sequencer
// Play values 1 then 2 then 3
Pseq([1,2,3]);

// 4 to the floor
Pseq([1,1,1,11);

Random value patterns: Pwhite and Pbrown
// (Pseudo) random values

Pwhite(lo: 0.0, hi: 1.0, length: inf);

// Drunk walk
Pbrown(lo: 0.0, hi: 1.0, step: 0.125, length: inf);

Random sequence patterns: Prand and Pxrand
// Randomly choose from a list
Prand([1,2,3],inf);

// Randomly choose from a list (no repeating elements)
Pxrand([1,2,3],inf);

Probability: Pwrand
Choose items in a list depending on probability

// 50/50 chance of either 1 or 10
Pwrand([1, 10], [0.5, 0.5])

// 25% chance of 1, 25} change of 3, 50% chance of 7
Pwrand([1, 3, 7], [0.25, 0.25, 0.5])

// 30% chance of 3, 40% change of 2, 307 chance of 5
Pwrand([4, 2, 5], [0.3, 0.4, 0.3])

11

Envelope pattern: Pseg
// Linear envelope from 1 to 5 in 4 beats

Pseg(levels: [1, 5], durs: 4, curves: \linear);

// Exponential envelope from 10 to 10000 in 8 beats
Pseg(levels: [10, 10000], durs: 8, curves: \exp);

Rest

Skip/sleep a pattern using Rest. If used in the \durkey of a Pbind, the value in
the parenthesis is the sleep time

// One beat, two beats, rest 1 beat, 3 beats
Pbind (\dur, Pseq([1,2,Rest(1),3])) .play;

Pkey: Share data between event keys
Using Pkey we can make an event’s parameters interact with eachother

// The higher the scale degree
// ... the shorter the sound
Pbind(
\degree, Pwhite(1,10),
\dur, 1 / Pkey(\degree)
) .play

More info about data sharing in patterns: here

patterns in patterns: The computer music inception
You can put patterns in almost all parts of patterns.

This may lead to interesting results:

// A sequence with 3 random values at the end

Pseq([1,2,Pwhite(1,10,3)]);

// An exponential envelope of random length
Pseg(levels: [10, 10000], durs: Pwhite(1,10), curves: \exp);

12

http://doc.sccode.org/Tutorials/A-Practical-Guide/PG_06g_Data_Sharing.html

Working with pitches

The pattern library comes with a bunch of useful features for working with
pitches in a convenient and interesting way.

The pitch model

Figure 6: pitch model

Pitch model is described here

Changing scales

// Use the \scale key, pass in a Scale object
Pbind(\scale, Scale.minor, \degree, Pseq((1..10))).play;
Pbind(\scale, Scale.major, \degree, Pseq((1..10))).play;
Pbind(\scale, Scale.bhairav, \degree, Pseq((1..10))).play;

Available scales

// See all available scales
Scale.directory.postln

Changing root note

// Use the \root key to transpose root note (halftones)

13

http://doc.sccode.org/Classes/Event.html

Pbind(\root, 0, \degree, Pseq((1..10))) .play;
Pbind(\root, 1, \degree, Pseq((1..10))).play;
Pbind (\root, 2, \degree, Pseq((1..10))).play;

Changing octaves

// Use the \octave key

Pbind(\octave, Pseq([2,4,5],inf), \degree, Pseq((1..10))).play;
Pbind(\octave, Pwhite(3,6), \degree, Pseq((1..10))).play;
Pbind(\octave, 7, \degree, Pseq((1..10))).play;

Playing chords

// Add an array of numbers to the degree parameter
// to play several synths at the same time (as a chord)
Pbind(\degree, [0,2,5] + Pseq([2,4,5],inf), \dur, 0.25).play;

Changing tempo

The tempo of patterns are controlled by the TempoClock class You can either
create your own TempoClock or modify the default clock like below

TempoClock.default.tempo_(0.5) // Half tempo
TempoClock.default.tempo_(0.25) // quarter tempo
TempoClock.default.tempo_(1) // normal tempo

Further learning resources

Videos

Tutorials by Eli Fieldsteel covering a range of subjects: SuperCollider Tutorials

E-book

e A gentle introduction to SuperCollider
Paper:

¢ Introduction to SuperCollider, Andrea Valle

14

https://www.youtube.com/watch?vyRzsOOiJ_p4&listPLPYzvS8A_rTaNDweXe6PX4CXSGq4iEWYC
https://ccrma.stanford.edu/~ruviaro/texts/A_Gentle_Introduction_To_SuperCollider.pdf
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn4017&lngeng&id

e The SuperCollider Book

Community

e scsynth.org
e sccode.org
o Slack

o Lurk

o Mailing list
o Telegram

o Telegram ES
o Facebook

Awesome SuperCollider
A curated list of SuperCollider stuff
Find inspiration and (a lot more) more resources here:

Awesome Supercollider

Learning to code: Advice

o Practice 5 minutes every day

o Set yourself goals: Make (small) projects

e Use the community

o Contribute to SuperCollider - improve documentation, help out on the
forums or make bug reports

15

https://mitpress.mit.edu/books/supercollider-book
http://scsynth.org/
http://sccode.org/
https://scsynth.slack.com/
https://talk.lurk.org/channel/supercollider
https://www.birmingham.ac.uk/facilities/ea-studios/research/supercollider/mailinglist.aspx
https://t.me/supercollider_en
https://t.me/supercollider_es
https://www.facebook.com/groups/supercollider/
https://github.com/madskjeldgaard/awesome-supercollider

	Design
	Short history of SuperCollider
	Overview
	Architecture
	Multiple servers
	Consequences of SC's modular design
	Extending SuperCollider
	SC Plugins

	How to use the IDE
	Important keyboard shortcuts
	The IDE as a calculator
	Autocompletion
	The status line
	Help browser
	Help browser online
	Post window

	About patterns
	What is a pattern?
	Guides in the help system

	Event patterns - Sequence sound events
	What is a (sound) event?
	What does an Event look like?
	Changing the default synth
	Introducing the almighty Pbind
	Keys correspond to Synth arguments
	Important note on the dur key
	When does a Pbind end?
	Live coding: Pdef

	Value patterns - Generate data for your event patterns
	The building blocks of compositions
	List patterns
	Testing value patterns: asStream
	Pseq: Classic sequencer
	Random value patterns: Pwhite and Pbrown
	Random sequence patterns: Prand and Pxrand
	Probability: Pwrand
	Envelope pattern: Pseg
	Rest
	Pkey: Share data between event keys
	patterns in patterns: The computer music inception

	Working with pitches
	The pitch model
	Changing scales
	Available scales
	Changing root note
	Changing octaves
	Playing chords
	Changing tempo

	Further learning resources
	Videos
	E-book

	Community
	Awesome SuperCollider
	Learning to code: Advice

